阿林陪你看世界自媒体, 一个90年后的草根站长!个人博客,专注互联网+的发展!QQ2227948465,重庆SEO,SEO,重庆SEO博客,重庆SEO服务!

大数据分析宝典(大数据分析基础视频教程)

阿林专栏 阿林 72℃ 0评论

数据分析五大步骤

我们将数据分析过程组织为五个步骤:提问、整理、探索、得出结论和传达结果。以下是关键要点的概述,但你可以选择跳过。我们将在后面的部分中演练每一步,所以你将很快熟悉整个过程。

所以搞明白研究这个事情的目的,是开始数据分析的第一步。拆解指标发现问题 在明确清楚我们的分析目的后,就要针对我们的分析目标进行指标拆解,通过拆解指标去发现问题。这么说有点虚,举个例子说明一下。

spss数据分析的五种方法:线性模型;点击分析,一般线性模型,单变量,设置因变量和固定因子,点击确定即可。图表分析。回归分析;点击分析,打开回归,设置自变量和因变量数据,点击确定即可。直方图分析。

spss数据分析的五种方法:线性模型;点击分析,一般线性模型,单变量,设置因变量和固定因子,点击确定即可。图表分析。回归分析,点击分析,打开回归,设置自变量和因变量数据,点击确定即可。直方图分析。

线性模型;点击分析,一般线性模型,单变量,设置因变量和固定因子,点击确定即可。图表分析。回归分析;点击分析,打开回归,设置自变量和因变量数据,点击确定即可。直方图分析。统计分析。

快速填充:选中B2单元格,输入包子,按Enter定位到B3单元格中,按Ctrl+E。2 分列:选中A2:A20数据区域,数据选项卡,分列。下一步,分隔符号选择逗号,下一步,目标区域选择$2$2。

大数据可以分析哪些数据内容?

1、分析数据:分析数据需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。SPSS、SAS、Python、R等工具,多多益善。

2、大数据包括数据采集,数据管理,数据传输,数据存储,数据安全、数据分析等内容。大数据涵盖的内容主要以数据价值化为核心的一系列操作,包括数据的采集、整理、传输、存储、安全、分析、呈现和应用。

3、大数据的类型大致可分为三类:传统企业数据、机器和传感器数据、社交数据。传统企业数据(Traditional enterprise data):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。

4、数据采集和存储:大数据分析的第一步是收集和存储数据。这可能涉及传感器、日志文件、社交媒体数据、交易记录等多种数据源。为了有效地存储和管理这些数据,使用的技术包括数据库系统、分布式文件系统和云存储等。

5、大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单。

大数据中有什么比较好用的知识?

1、分析思维比如结构化思维、思维导图、或百度脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。

2、数据存储阶段:SQL,oracle,IBM等等都有相关的课程,霍营java课程培训机构建议根据公司的不同,学习好这些企业的开发工具,基本可以胜任此阶段的职位。

3、数据收集可以是历史数据采集或实时数据采集。它可以收集存储在数据库中的结构化数据,或收集非结构化数据,如文本,图片,图像,音频,视频等。

4、数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。

5、Excel:会进行简单的数据处理,一般进入互联网公司会做一些报表,数据处理的工作。这类工作需要和其它技能相结合才有发挥空间,前景可以做行业数据分析。

本文由 文章来源于网络如需要删除联系作者:http://www.youhonglin.com/2678.html

本站部分内容来自网络,如有侵权,请联系我们进行处理,转载本站文章请注明出处!
喜欢 (0)or分享 (0)
发表我的评论
取消评论

表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

阿林陪你看世界